Transcriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation
نویسندگان
چکیده
The removal of histone H3 trimethylation at lysine residue 27 (H3K27me3) plays a critical role in the transcriptional initiation of developmental genes. The H3K27me3-specific KDM6 demethylases JMJD3 and UTX are responsible for the transcriptional initiation of various developmental genes, but some genes are expressed in a KDM6 demethylase-independent manner. To address the role of H3K27me3 in the retinoic acid (RA)-induced differentiation of the human carcinoma NCCIT cell line, we inhibited JMJD3 and UTX using the H3K27me3 demethylase inhibitor GSK-J4. The commitment of JMJD3/UTX-inhibited cells to a specific fate was delayed, and transcriptome profiling also revealed the differential expression of genes related to cell fate specification in demethylase-inactivated cells; the expression levels of RA metabolism and HOX family genes significantly decreased. We observed a weak correlation between H3K27me3 enrichment and transcriptional repression in the control and JMJD/UTX-inhibited cells, except for a few sets of developmental genes that are indispensable for cell fate specification. Taken together, these results provide the H3K27me3 landscape of a differentiating cell line and suggest that both demethylase-dependent and demethylase-independent transcriptional regulation play a role in early differentiation and developmental gene expression activated by H3K27me3 demethylation.
منابع مشابه
Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells
Embryonic development requires chromatin remodeling for dynamic regulation of gene expression patterns to ensure silencing of pluripotent transcription factors and activation of developmental regulators. Demethylation of H3K27me3 by the histone demethylases Utx and Jmjd3 is important for the activation of lineage choice genes in response to developmental signals. To further understand the funct...
متن کاملThe histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation.
The histone H3 Lys 27 (H3K27) demethylase JMJD3 has been shown to play important roles in transcriptional regulation and cell differentiation. However, the mechanism underlying JMJD3-mediated transcriptional regulation remains incompletely understood. Here we show that JMJD3 is associated with KIAA1718, whose substrates include dimethylated H3K27 (H3K27me2), and proteins involved in transcripti...
متن کاملThe histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis.
Histone chaperones affect chromatin structure and gene expression through interaction with histones and RNA polymerase II (PolII). Here, we report that the histone chaperone Spt6 counteracts H3K27me3, an epigenetic mark deposited by the Polycomb Repressive Complex 2 (PRC2) and associated with transcriptional repression. By regulating proper engagement and function of the H3K27 demethylase KDM6A...
متن کاملUTX in muscle regeneration--the right dose and the right time.
Precise epigenetic modifications in stem cells control developmental programs and cell fate decisions. In particular, the addition or removal of trimethylation of histone 3 lysine 27 (H3K27me3) at lineage-specific genes has been linked to the repression of gene expression, and a precise balance of methyltransferases and demethylases within cells determines H3K27me3 levels. The demethylase UTX i...
متن کاملKDM6 Demethylase Independent Loss of Histone H3 Lysine 27 Trimethylation during Early Embryonic Development
The early mammalian embryo utilizes histone H3 lysine 27 trimethylation (H3K27me3) to maintain essential developmental genes in a repressive chromatin state. As differentiation progresses, H3K27me3 is removed in a distinct fashion to activate lineage specific patterns of developmental gene expression. These rapid changes in early embryonic chromatin environment are thought to be dependent on H3...
متن کامل